Knigi-for.me

Карл Гильзин - Путешествие к далеким мирам

Тут можно читать бесплатно Карл Гильзин - Путешествие к далеким мирам. Жанр: Науки о космосе издательство -, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте knigi-for.me (knigi for me) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

«Воздушная торпеда» представляла собой первую из ракет такого рода — беспилотную крылатую ракету с автоматическим управлением. Дальность полета торпеды должна была составлять по проекту 50 километров. Торпеда успешно прошла летные испытания в 1939 году (29 января и 8 марта). Ракетоплан представлял собой экспериментальный самолет-моноплан небольшого размера, предназначенный для установки на нем жидкостного ракетного двигателя, — это был первый не только у нас в стране, но и во всем мире летательный аппарат подобного типа. Он был создан путем переоборудования двухместного планера, успешно летавшего начиная с 1935 года. Во время наземных испытаний двигателя на ракетоплане он проработал (в марте 1938 года) непрерывно 230 секунд, что было большим достижением для того времени.


Взлет отечественной ракеты с жидкостным ракетным двигателем (1933 г.).

Крупнейшим успехом в развитии жидкостных ракетных двигателей был ознаменован 1940 год: в этом году совершен первый полет человека на самолете с жидкостным ракетным двигателем. 28 февраля 1940 года с одного из подмосковных аэродромов взлетел самолет, на буксире у которого находился упомянутый выше ракетоплан (с другим ракетным двигателем). В воздухе летчик В. П. Федоров, пилотировавший ракетоплан, перевел его на самостоятельный полет и включил двигатель. Так был совершен этот исторический полет человека на самолете с жидкостным ракетным двигателем. Началась новая страница в развитии реактивной техники.

Через два с небольшим года, 15 мая 1942 года, капитан Г. Я. Бахчиванджи совершил первый полет уже на специально спроектированном самолете с жидкостным ракетным двигателем. Первый раз в истории такой самолет поднял человека в воздух.

Жидкостные ракетные двигатели применяются сейчас в авиации для различных целей.

В ряде случаев они используются для облегчения взлета тяжелых самолетов. Иногда эти двигатели устанавливаются на самолетах в дополнение к основному двигателю другого типа, например турбореактивному, с целью увеличения скорости полета в нужный момент — при наборе высоты, в воздушном бою и т. д. Такая установка применялась в нашем Военно-Воздушном Флоте еще в годы минувшей войны; в частности, жидкостный ракетный двигатель РД-1 был установлен в хвосте известного пикирующего бомбардировщика «ПЕ-2» конструкции В. М. Петлякова.

Устанавливаются жидкостные ракетные двигатели на самолетах и в качестве основного и единственного двигателя. Самолеты с этими двигателями предназначаются обычно для исследовательских целей — изучения особенностей полета на очень больших, сверхзвуковых скоростях. С их помощью удается достигать наибольших, доступных пока, скоростей полета. Имеются и военные самолеты с такими двигателями — так называемые истребители обороны, или истребители-перехватчики, задачей которых является борьба с бомбардировщиками врага.

Однако самолеты с жидкостным ракетным двигателем обладают и одним очень серьезным недостатком по сравнению с другими самолетами — они могут находиться в полете гораздо меньшее время. Это объясняется тем, что жидкостные ракетные двигатели обладают исключительной «прожорливостью» — они расходуют в 15–20 раз больше топлива, чем турбореактивные двигатели такой же тяги. Это не удивительно. Ведь турбореактивные двигатели современных самолетов, хотя бы нашего хорошо всем известного авиалайнера ТУ-104, помимо топлива, находящегося в баках самолета, используют для своей работы атмосферный воздух, точнее — кислород из этого воздуха. Таким образом, вся окружающая нас атмосфера служит для этого двигателя как бы вторым огромным «топливным» баком. Иначе обстоит дело в случае жидкостного ракетного двигателя. Как уже было отмечено в начале этой главы, на самолете с таким двигателем, помимо бака с горючим, должен иметься и бак с окислителем — допустим, тем же кислородом, но только жидким. Понятно, что общий расход топлива, то есть горючего вместе с окислителем, получается значительно большим, чем расход топлива в турбореактивном двигателе. Вот почему при непрерывной работе жидкостного ракетного двигателя на полной мощности запаса топлива на истребителе-перехватчике хватает лишь на 3–5 минут! Чередуя разгон самолета при работающем двигателе с последующим планированием, когда двигатель выключен, летчик такого самолета может довести общую продолжительность полета до 20–30 минут. Этого только-только хватает для того, чтобы взлететь, навязать бой противнику в районе своего аэродрома и сесть с пустыми баками. Поэтому жидкостные ракетные двигатели применяются пока только на единственном типе самолетов — истребителях-перехватчиках, да и то вдобавок к другому двигателю.

Главное использование жидкостных ракетных двигателей связано, однако, в настоящее время не с авиацией, а с различного рода ракетами. Это и тяжелые снаряды противовоздушной обороны, и ракетные авиабомбы, и снаряды дальнего действия, и высотные ракеты.

Применение тяжелых ракет с жидкостным ракетным двигателем с каждым днем все расширяется, и некоторые из таких ракет начинают уже сильно походить на небольшие межпланетные корабли, как их обычно рисуют в книжках…

Вот одна из таких ракет, применявшаяся в минувшую войну в качестве тяжелого дальнобойного реактивного снаряда. Боевая головка этого снаряда заключала в себе ¾ тонны взрывчатого вещества, и снаряд пролетал расстояние около 300 километров. Конечно, ни одна самая тяжелая и дальнобойная пушка такими тяжелыми снарядами и так далеко не стреляла. На этом снаряде был установлен мощный жидкостный ракетный двигатель.

Ракета имела длину около 14 метров, диаметр — 1,7 метра, а сзади, по хвостовому оперению, — даже 3,6 метра. Поневоле поражаешься размерам этой ракеты, когда сравниваешь ее с фигурами стоящих рядом людей. Ну, и вес ракеты тоже внушительный — примерно 13 тонн, так что вес «полезной нагрузки» — взрывчатки — составляет только небольшую часть, несколько процентов от общего веса ракеты.

Двигатель установлен в «корме» ракеты, как это будет, очевидно, и на межпланетном корабле. Работает он на топливе, состоящем из двух жидкостей. Вот почему на этой ракете, в ее средней части, установлены два гигантских бака.

В переднем баке находится горючее, которым в данном случае служит этиловый, то есть винный, спирт (крепкий, не менее 75°). Задний бак служит для хранения окислителя — чистого жидкого кислорода, как это и предлагал в свое время Циолковский. Запас топлива на ракете равен примерно 9 тоннам. Вот что составляет большую часть, примерно ⅔, общего веса ракеты. Из этих 9 тонн около 4 тонн — спирт, остальное — жидкий кислород.

Для выстрела, то есть запуска, ракета устанавливается в вертикальном положении, в котором она поддерживается с помощью специального легкого станка-люльки. Почти как межпланетный корабль, приготовившийся к прыжку в мировое пространство! В таком положении заполняются топливом гигантские баки ракеты — ракета заправляется. Для этой цели служат мощные автозаправщики, но какими игрушечными они кажутся рядом с устремленной ввысь ракетой!


Исследовательский сверхзвуковой самолет с жидкостным ракетным двигателем.

Но вот заправка кончена, ракету можно запускать. Открываются топливные краны, спирт и кислород поступают в камеру сгорания двигателя. Там происходит воспламенение топлива, и образовавшиеся в результате сгорания раскаленные газы с большой скоростью начинают вытекать из двигателя через сопло в атмосферу.


Подготовка ракеты к запуску. На заднем плане видна ракета в момент взлета. Устройство тяжелого дальнобойного снаряда-ракеты (Фау-2) с жидкостным ракетным двигателем.

Сила реакции струи вытекающих из двигателя газов направлена вверх; она стремится поднять ракету, оторвать ее от земли.

Сделать это, правда, не так просто, ведь ракета весит 13 тонн! Однако, оказывается, при нормальной своей работе двигатель ракеты развивает тягу, вдвое превосходящую вес ракеты, — тягу в 25–26 тонн. Это тяга современных мощных паровозов, водящих тяжеловесные поезда. И вот с такой огромной силой газы, вырывающиеся из ракеты вниз, толкают ее вверх. На этот режим полной тяги двигатель выходит только через несколько секунд после его запуска (вначале устанавливается так называемый предварительный режим — с тягой 8 тонн). Быстро увеличиваясь, тяга выравнивается с весом ракеты, потом становится больше этого веса — ракета вздрагивает, медленно, как бы нехотя, отрывается от земли, а затем все быстрее и быстрее взмывает кверху, очень скоро исчезая из глаз наблюдателя.

Весь дальнейший полет ракеты осуществляется автоматически. Он управляется приборами, стоящими на самой же ракете, в специальном приборном отсеке, за боевой головкой. Повлиять на полет ракеты с земли после того, как она уже взлетела, невозможно. Ракета взлетает, а потом, подчиняясь команде приборов, установленных на ней, мчится к цели, находящейся на расстоянии 300 километров от места взлета.


Карл Гильзин читать все книги автора по порядку

Карл Гильзин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-for.me.