Knigi-for.me

Карл Гильзин - Путешествие к далеким мирам

Тут можно читать бесплатно Карл Гильзин - Путешествие к далеким мирам. Жанр: Науки о космосе издательство -, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте knigi-for.me (knigi for me) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Не менее сложна и трудна задача увеличения скорости истечения газов из жидкостного ракетного двигателя. В настоящее время эта скорость не превышает 2500–3000 метров в секунду. Увеличение скорости истечения газов происходит очень медленно и достигается ценой больших усилий. Для того чтобы добиться увеличения скорости истечения газов, приходится решать сразу две самостоятельные задачи — искать более калорийные топлива, то есть топлива, выделяющие при сгорании больше тепла, и обеспечивать работоспособность двигателя на этих топливах. Чем больше тепла выделяет топливо при сгорании в двигателе, тем больше при прочих равных условиях скорость истечения газов из двигателя.


Строительство искусственного спутника Земли.

Наибольшие скорости истечения достигаются в настоящее время обычно при использовании в качестве окислителя жидкого кислорода, а в качестве горючих — нефтепродуктов (бензин, керосин). Наименьшие — в случаях, когда окислителем служит перекись водорода или азотная кислота.

Каковы возможности увеличения скорости истечения при использовании наилучших комбинаций окислителей и горючих, которые могут быть составлены из имеющихся химических элементов?

Исследования советских и зарубежных ученых показывают, что эти возможности, в общем, весьма ограниченны. В числе перспективных топлив можно назвать, например, предложенные Кондратюком соединения фосфора и соединения кремния; предложенные Цандером и Кондратюком металлы и соединения металлов, в частности соединения металла бора с водородом, так называемые бораны, металла лития и другие — в качестве горючих; предложенный Циолковским озон, соединения фтора и некоторые другие — в качестве окислителей.

Изучение ряда новых топлив производится и в настоящее время. Они, конечно, будут применяться в будущем во многих случаях вместо современных топлив. Однако скорость истечения газов при этих топливах не будет, вероятно, превышать 4500 метров в секунду.

Мы видим, что химия бессильна решить задачу значительного увеличения скорости истечения газов из жидкостного ракетного двигателя, ибо освобождаемая при сгорании топлив химическая энергия оказывается для этого недостаточной.

Правда, чтобы не быть несправедливым по отношению к химии, надо указать на одну возможность, хотя в настоящее время еще неизвестно, удастся ли когда-нибудь ее реализовать. Зато уж очень заманчивые перспективы сулит она астронавтике!

Эта возможность связана с так называемым атомарным топливом. Оказывается, существуют такие химические реакции, которые приводят к выделению необычайно больших количеств тепла — это реакции образования некоторых молекул из отдельных атомов. Можно представить себе, например, двигатель, в камере сгорания которого вместо обычного горения происходит реакция образования молекул водорода из его атомов. Это был бы замечательный двигатель! Во-первых, для него не нужно было бы двух различных веществ — горючего и окислителя, достаточно одного вещества — водорода. Во-вторых, скорость истечения газов из подобного двигателя могла бы превысить… 10 километров в секунду! Вот с какой огромной скоростью молекулы водорода, образовавшиеся в двигателе из атомов, вытекали бы из сопла двигателя в атмосферу. Не нужно было бы и никакой системы зажигания для такого двигателя — атомы водорода обладают, как говорят, огромной химической активностью, они стремятся слиться по два, то есть образовать молекулы.

Именно эта необычная химическая активность атомов водорода и других атомов, выделяющих при соединении в молекулы много тепла, мешает создать двигатели, работающие на атомарном топливе. Свободные атомы водорода могут существовать ничтожные доли секунды — они практически мгновенно соединяются друг с другом, образуя молекулы.

Обычно атомарный водород получают путем пропускания струи водорода через мощный электрический разряд. При этом электрическая энергия затрачивается на расщепление молекул водорода на атомы. Но как только атомы водорода покидают электрическую дугу, они немедленно образуют снова молекулы, выделяя полученную ими ранее электрическую энергию уже в виде тепла. Вот если бы можно было найти способ предотвратить это обратное воссоединение атомов в молекулы, если бы можно было научиться хранить водород в атомарном состоянии! Тогда достаточно было впустить струю атомарного водорода в камеру двигателя, чтобы в ней произошла, как говорят, рекомбинация молекул водорода и раскаленная струя вытекающего газа создала бы огромную силу тяги. С таким двигателем можно было бы добиться немалых побед в борьбе за покорение мирового пространства.

Но, увы, пока это только мечта. До последнего времени даже теоретически не было известно ни одного метода, с помощью которого можно было бы научиться хранить атомарные газы. Лишь в 1956 году появились какие-то проблески надежды: исследователи научились сохранять активные химические частицы в течение нескольких часов.[24] Для этого полученные атомарные газы сразу же подвергаются очень сильному, или, как говорят, глубокому, охлаждению. Температура их резко снижается до нескольких градусов выше абсолютного нуля. Удастся ли использовать этот принцип для хранения атомарного топлива ракетных двигателей, покажет будущее.

Но и, помимо атомарного топлива, далеко не все еще ресурсы химии, не все возможности химических топлив уже использованы. Дальнейшие исследования по подбору новых, более эффективных топлив способны увеличить скорость истечения, достигнутую в настоящее время, примерно на 50 процентов. Это значительно увеличило бы скорость и дальность полета ракет, было бы крупнейшим шагом вперед в развитии реактивной техники, а значит, и важной победой в борьбе за покорение мирового пространства.

Однако, чтобы сделать такой шаг, одержать такую победу, мало найти новые, более эффективные топлива. Нужно обеспечить надежную работу двигателя на этих топливах.

Жидкостные ракетные двигатели работают в значительно более тяжелых условиях, чем любые другие двигатели: авиационные, автомобильные, судовые и проч. Поэтому жидкостные ракетные двигатели обладают меньшей надежностью, меньшей продолжительностью работы, меньшим сроком жизни. Эти тяжелые условия работы жидкостных ракетных двигателей связаны с тем, что рабочие газы в них имеют высокое давление, необычайно высокую температуру и движутся с колоссальной скоростью.


Сравнительная дальность полета ракет, работающих на различных топливах. За единицу принята дальность ракеты, работающей на бензине и азотной кислоте.

Такие условия работы жидкостных ракетных двигателей делают исключительно важной и сложной проблему их охлаждения. Газы, заполняющие двигатель при давлении в десятки атмосфер и температуре 3000° и даже больше, движутся относительно стенок двигателя, со скоростью, во много раз превышающей в некоторых частях двигателя, например в сопле, скорость звука. Естественно, что стенкам двигателя каждую секунду передается огромное количество тепла. Если это тепло не отводить от стенок двигателя, то они очень быстро прогорят и двигатель моментально выйдет из строя. Ведь не известен ни один материал, который мог бы выдержать такие температуры при подобных давлениях. Вот почему для жидкостных ракетных двигателей важнейшим условием их надежности является хорошая система охлаждения.

Уже сейчас некоторые более калорийные сорта топлива не удается применять из-за трудностей, связанных с охлаждением двигателей. Это объясняется тем, что при использовании более калорийных топлив увеличивается и температура газов в камере сгорания. Именно поэтому, например, двигатель дальней ракеты, описанной в главе 6, работает не на чистом спирте, а на спирте с добавкой 25 процентов воды. Эта добавка снижает температуру газов и облегчает охлаждение, хотя она ухудшает характеристики двигателя, уменьшая его тягу почти на 20 процентов — на 5 тонн.

Понятно, что применение новых, гораздо более калорийных топлив, необходимых для космических кораблей, требует существенного усовершенствования систем охлаждения жидкостных ракетных двигателей.

Одним из перспективных методов охлаждения является так называемое проникающее охлаждение, или «охлаждение выпотеванием», как его иногда называют. В этом случае стенки жидкостного ракетного двигателя изготовляются пористыми, с бесчисленным множеством крохотных отверстий диаметром в тысячные доли миллиметра. Через эти отверстия внутрь двигателя проходит специальная охлаждающая жидкость. При таком методе охлаждения внутренняя поверхность стенок, соприкасающихся с раскаленными газами, покрывается сплошным тонким слоем охлаждающей жидкости, защищающим стенку от перегрева. Стенки как бы «потеют», откуда и произошло название этой системы охлаждения. Возможно, что наиболее горячие части двигателей космических кораблей будут иметь именно такое охлаждение.


Карл Гильзин читать все книги автора по порядку

Карл Гильзин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-for.me.