Knigi-for.me

Карл Гильзин - Путешествие к далеким мирам

Тут можно читать бесплатно Карл Гильзин - Путешествие к далеким мирам. Жанр: Науки о космосе издательство -, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте knigi-for.me (knigi for me) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Но зачем же в спутнике находился азот?

Прежде всего, он создавал давление внутри герметического шара-спутника. Легко видеть, что это необходимо и для работы приборов спутника, и для уменьшения толщины его стенок. Но не менее важна и вторая роль азота: она связана с регулированием температурного режима спутника.

Двигаясь по своей орбите, спутник то нагревался палящими лучами Солнца, то замерзал, когда для него наступало «солнечное затмение», то есть когда он попадал в конус земной тени. Температура спутника при таких переходах может измениться более чем на 200–250 °C. Может быть, это было бы и не страшно для металлического шара, но заведомо недопустимо для различного научного оборудования, размещенного внутри шара. Поэтому возникла острая необходимость регулировать температуру спутника.


Записанные радиосигналы первого советского спутника. Как видно, они не совсем одинаковые.

Задача эта оказалась очень нелегкой и, главное, совершенно новой — ведь еще никому до сих пор не приходилось регулировать температуру какого-нибудь… небесного тела. А спутник является как раз именно таким телом, его температура определяется лучистым теплообменом с окружающим пространством. Поэтому поверхности спутника были приданы определенные свойства в отношении поглощения и излучения лучистого тепла. Но этого мало. При тепловых расчетах спутника приходилось учитывать и выделение тепла внутри него, как это имеет место, допустим, внутри земного шара. Только Земля подогревается изнутри теплом радиоактивного распада калия, урана и других веществ, а спутник — теплом, выделяющимся в результате работы установленного на нем научного оборудования и радиостанций.

Продолжая эту аналогию между Землей и нашим искусственным спутником, можно было бы указать и еще некоторые сходства и различия. Так, в отличие от Земли, мчащейся в безвоздушном пространстве, спутник движется в земной атмосфере, хоть и очень разреженной. Это заставляет учитывать и некоторое количество тепла, которое спутник получает в результате трения о воздух. С другой стороны, Земля обладает замечательным механизмом для выравнивания температуры по всей ее поверхности — атмосферой. Такой атмосферы спутник лишен. Впрочем, почему лишен?

Вот тут-то мы и встречаемся со второй функцией азота, заполняющего спутник. Если нельзя создать атмосферу, окружающую спутник, то почему бы не устроить ее… внутри спутника? Ведь подобная атмосфера тоже может выравнивать температуру на спутнике. И вот наш спутник приобретает азотную «атмосферу». Но если мы еще пока не в силах управлять ветрами в земной атмосфере и только мечтаем об этом, то никто не мешает нам организовать «ветры» в азотной атмосфере спутника наилучшим образом, чтобы приборы внутри спутника находились в наиболее благоприятных условиях. Вот почему азот в спутнике циркулирует по заданным путям с помощью специальных устройств. Это тоже была нелегкая задача.

Глядя на модель первого советского спутника — блестящий металлический шарик с усами антенн, — впервые показанную на Всесоюзной промышленной выставке, не просто было представить себе все трудности, которые пришлось преодолеть при его создании, все проблемы, которые пришлось решить. Но, конечно, самая большая, самая главная трудность заключалась в том, чтобы доставить этот скромный на вид и такой замечательный по существу шарик на его головокружительную орбиту. Для этого мало было даже создать невиданную, не существующую нигде за рубежом сверхвысотную ракету. Нужно было научиться управлять ракетой так, чтобы она прочертила в мировом пространстве точно предопределенный ей путь.

Долгие месяцы, если не годы, рассчитывали бы ученые этот путь, если бы не прибегли к помощи совершенных электронных счетных машин, — без них такие расчеты были бы вряд ли возможны. Сколько самых различных обстоятельств и влияний пришлось учитывать при выполнении этих расчетов! И вот ракета взлетела. Одно — два неучтенных обстоятельства, выходящая за рамки допустимой производственная погрешность, ничтожная неточность в работе, одна из сотен возможных случайностей — и весь огромный труд пойдет насмарку, ракета не выйдет на заданную орбиту.

Ведь стоит ошибиться в величине конечной скорости ракеты на заданной высоте орбиты на два — три десятка метров в секунду — это при скорости-то в 8 километров в секунду! — и высота спутника над Землей изменится на добрую сотню километров. На столько же изменит положение орбиты спутника и ничтожное, в один градус, изменение направления конечной скорости вверх или вниз. Мы уже не говорим о таких ошибках, которые приводят к гибели ракеты…

Запуск первого советского спутника удалось осуществить сразу, без каких бы то ни было репетиций, и он полностью подтвердил все предварительные расчеты ученых, показал безупречную работу всех двигателей, механизмов, устройств, приборов. Ракета вышла абсолютно точно на заданный курс, спутник стал обращаться вокруг Земли по строго указанной ему орбите. Это поистине блестящий, невиданный успех советской науки и техники!

Конечно, второму советскому спутнику было намного легче — ведь дорожка в Космос была уже проторена, второй раз — не первый! Но зато ему было и много трудней. Достаточно вспомнить хотя бы о том, что он весил в 6 раз больше — только вес его оборудования превосходил полтонны. И вместе с тем забрался этот спутник почти на тысячу километров выше. Но, пожалуй, самое большое его отличие от первого спутника заключается в количестве установленного научного оборудования. Второй спутник — это уже целая научно-исследовательская лаборатория в Космосе.

Все научное оборудование второго спутника установлено непосредственно на ракете-носителе, а не на особом шаровидном спутнике. Это объясняется, главным образом, тем, что задача определения плотности воздуха на больших высотах уже не являлась здесь основной, так что второй спутник мог быть и не шаровым. С другой стороны, расположить все научное оборудование второго спутника в шаре было практически невозможно, такой шар получился бы несоразмерно большим. Вместе с тем, чтобы увеличить срок жизни второго спутника, его орбита была повышена, да и, как оказалось, даже на меньших высотах, соответствующих полету первого спутника, срок жизни ракеты-носителя достаточно велик.

На втором спутнике имелся и шар, похожий на шаровидный первый спутник. В этом шаре были расположены радиостанции с источниками питания, различные измерительные приборы, система циркуляции газа. Радиостанции спутника работали на волнах 7,5 и 15 метров, но на этот раз передачи на волне 15 метров велись, как и раньше, в виде телеграфных посылок длительностью 0,3 секунды с такими же паузами, тогда как станция на волне 7,5 метра излучала сигнал непрерывно. Большая мощность радиопередатчиков позволяла принимать их сигналы на расстояниях до 15 тысяч километров, а в некоторых случаях эти сигналы обходили даже вокруг земного шара.

Спереди, на силовой раме, предназначенной для крепления научной аппаратуры, была установлена «солнечная лаборатория» спутника для исследования коротковолнового солнечного излучения — ультрафиолетового и рентгеновского. О том, что Солнце испускает, кроме видимого света, и такие лучи, стало известно только в последние годы в результате исследований, произведенных с помощью высотных ракет. Эти коротковолновые лучи могут быть обнаружены лишь на огромных высотах, куда залетают ракеты. На меньших высотах и у земли такие лучи в солнечном спектре не обнаруживаются, они полностью поглощаются вышележащими слоями атмосферы; земной поверхности достигают лишь наиболее длинноволновые ультрафиолетовые лучи, непосредственно примыкающие к фиолетовой части спектра. Объясняется это тем, что коротковолновое излучение Солнца обладает чрезвычайно большой активностью и потому вступает во взаимодействие с верхними слоями атмосферы, вызывая ионизацию молекул воздуха. Ученые считают, что коротковолновое ультрафиолетовое излучение Солнца (большая часть этого излучения испускается атомами водорода в хромосфере Солнца и соответствует длине волны 1215 ангстрем) и рентгеновское излучение солнечной короны (так называемые мягкие рентгеновские лучи с длиной волны 3-100 ангстрем) являются главной причиной образования ионосферы.


Схема устройства второго советского искусственного спутника Земли.

Хотя общая энергия коротковолнового излучения Солнца очень мала сравнительно с энергией излучаемого им видимого света, однако оно оказывает исключительно большое влияние на земную атмосферу. Уже одно это делает чрезвычайно ценным его изучение. С другой стороны, коротковолновое излучение рождается малоизученными внешними слоями солнечной атмосферы — хромосферой и короной, что только усиливает интерес к нему. Наконец, установлено, что усиление солнечной активности, связанное с появлением так называемых хромосферных вспышек, неизменно приводит к интенсивным процессам в ионосфере, результатом которых являются, в частности, нарушения радиосвязи. Это делает особенно важным как с теоретической, так и с практической точек зрения согласованное изучение ионосферных процессов, солнечной активности и коротковолнового солнечного излучения. Именно для этих целей более всего подходит «солнечная лаборатория» на спутнике, работающая параллельно с земными станциями «службы Солнца».


Карл Гильзин читать все книги автора по порядку

Карл Гильзин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-for.me.