Knigi-for.me

Евгений Айсберг - Радио и телевидение?.. Это очень просто!

Тут можно читать бесплатно Евгений Айсберг - Радио и телевидение?.. Это очень просто!. Жанр: Радиотехника издательство -, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте knigi-for.me (knigi for me) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Здесь, как ты видишь, мы сталкиваемся с паразитной обратной связью. Как с ней бороться?

И в этом случае можно воспользоваться экраном. Нет, Незнайкин, не думай, что я смеюсь над тобой. Экран, о котором я сейчас говорю, представляет собой сетку со строго фиксированным потенциалом. Ее размещают между управляющей сеткой и анодом. Так получили четырехэлектродную лампу, потому что помимо катода, управляющей сетки и анода в ней имеется экранирующая сетка. Поэтому лампу называют тетродом (от греческого слова «тетра» — четыре).

Чтобы экранирующая сетка не мешала, а, наоборот, способспвовала прохождению электронов, на нее подают высокий положительный потенциал, который все же ниже потенциала анода. Для этой цели экранирующую сетку можно соединить с общей точкой двух резисторов, включенных последовательно между двумя полюсами источника высокого напряжения (рис. 93, а). Говорят, что эти резисторы образуют делитель напряжения. Можно также соединить экранирующую сетку через резистор с положительным полюсом источника напряжения (рис. 93, б). Имеющая положительный потенциал экранирующая сетка притягивает электроны, и образовавшийся таким образом ток создает падение напряжения на резисторе, необходимое для поддержания потенциала экранирующей сетки заданной величины.



Рис. 93. В схеме с тетродом для подачи положительного напряжения на экранирующую сетку можно использовать делитель напряжения из двух резисторов (а) или подключить экранирующую сетку к положительному полюсу источника высокого напряжения через резистор (б).


Благодаря экранирующей сетке действие анода на электронный поток уменьшается, а чем меньше действие анода на электронный поток по сравнению с действием управляющей сетки, тем больше усиление лампы.

Я надеюсь, что ты не забыл определение коэффициента усиления. Это отношение изменения потенциала сетки к изменению потенциала анода, вызывающие такое же изменение величины анодного тока. Из сказанного ты легко поймешь, что у тетрода коэффициент усиления значительно больше, чем у триода; он может достигать и даже превышать 1000.

Что же касается крутизны, то у тетрода и триода значения ее примерно одинаковы, так как экранирующая сетка не оказывает никакого влияния на результат воздействия потенциала управляющей сетки на величину анодного тока.

Ты, надеюсь, не забыл, что коэффициент усиления μ равен произведению крутизны S на внутреннее сопротивление Ri:

μ = Ri

И если у тетрода μ значительно больше, чем у триода, а значения S примерно одинаковы, то следует предположить, что и Ri тоже намного выше. В самом деле, внутреннее сопротивление тетрода очень велико. Оно может даже достигать 1 МОм.


Вторичная эмиссия. Пентод

До сих пор я говорил лишь о достоинствах, которыми обладает тетрод. Увы, наряду со своими прекрасными качествами он имеет большой недостаток: вторичную эмиссию. Когда испускаемые катодом электроны ударяются об анод, удар вызывает вылет некоторого количества электронов. Они покидают молекулы, расположенные на поверхности анода. В триоде это не вызывает нежелательных явлений, так как эти вторичные электроны сразу же притягиваются анодом, имеющим положительный потенциал.

Однако в тетроде не все завершается столь благополучно. Часть вторичных электронов получает в результате удара большую скорость, дающую им возможность достаточно удалиться от анода и приблизиться к экранирующей сетке настолько, что ее притяжение превысит притяжение анода. Попавшие в поле экранирующей сетки электроны притягиваются ею. В результате вторичная эмиссия порождает ток, проходящий от анода к экранирующей сетке.

Устранить этот недостаток тетрода возможно введением в лампу третьей сетки между экранирующей сеткой и анодом. Эту сетку соединяют внутри самой лампы с катодом. Ее отрицательный по отношению к аноду потенциал будет отталкивать вторичные* электроны обратно к аноду.

В то же время третья сетка не мешает прохождению электронов, испускаемых катодом. Ускоренные экранирующей сеткой и притягиваемые сильным полем анода, они на большой скорости проходят сквозь третью сетку. Эта новая лампа с тремя сетками содержит пять электродов, чем и определяется ее название пентод (рис. 94).



Рис. 94. Условное графическое обозначение пентода.


Комбинированные лампы. Гептоды. Октоды

Теперь ты, наверно, спрашиваешь себя, до чего может дойти это увеличение количества электродов в лампе. Успокойся. Триоды, тетроды и пентоды — основные типы электронных ламп.

Существуют лампы, содержащие в себе комбинации этих основных типов, — комбинированные лампы. Примером может служить двойной диод, используемый для выпрямления переменного тока. Но существуют и лампы с 7 и 8 электродами, которые называются соответственно гептодами и октодами.

Об этих сложных приборах мы поговорим в следующий раз.

Беседа восьмая

СУПЕРГЕТЕРОДИН

Практически все современные радио- и телевизионные приемники собраны по супергетеродинной схеме. В настоящей беседе Любознайкин объясняет принцип преобразования частоты, приводит различные способы, позволяющие осуществить преобразование частоты, и используемые для этой цели комбинированные лампы.


Недостатки многокаскадного УВЧ

Незнайкин. — Должен признаться, Любознайкин, что последний рассказ твоего дядюшки произвел на меня очень большое впечатление. Обратная связь, которая в зависимости от обстоятельств может быть полезной или вредной, наложение колебаний разной частоты и лампы с многочисленными электродами — все это до сих пор беспрестанно кружится в моей голове.

Любознайкин. — Все это, однако, позволит тебе лучше понять принцип действия супергетеродина.

Н. — Что за аппарат наградили таким суперназванием?

Л. — Это исключительно рационально сконструированный приемник, обладающий высокой чувствительностью и избирательностью.

Н. — Мне думается, что, установив достаточно каскадов УВЧ, можно очень просто обеспечить и превосходную чувствительность и очень хорошую избирательность.

Л. — Теоретически ты прав, а на практике нет. Когда собирают несколько каскадов УВЧ, все меры предотвращения паразитных связей (экранирование, применение ламп типа тетродов и пентодов) оказываются напрасными; паразитные связи обычно достигают такой величины, что возникает самовозбуждение, т. е. начинают генерироваться колебания, вступающие в интерференцию с ВЧ колебаниями принимаемых передач. Чем выше частота последних, тем более опасно действуют паразитные связи. Так, при приеме коротких и еще в большей степени ультракоротких воли практически невозможно обеспечить сколько-нибудь эффективное усиление ВЧ. Кроме того, каждый каскад УВЧ в принципе должен содержать по крайней мере один контур, настроенный на частоту принимаемой радиостанции. А ты, несомненно, понимаешь, насколько сложно произвести такую настройку нескольких контуров одновременно.



Принцип работы супергетеродина

Н. — Теперь я понимаю недостатки многокаскадного усиления ВЧ. Но в чем же заключается решение этой проблемы?

Л. — В преобразовании частоты. Частоты принимаемых станций прообразуют в постоянную частоту, именуемую промежуточной (рис. 95).



Рис. 95. Структурная схема приемника-супергетеродина.


Колебания этой частоты можно эффективно усиливать, не опасаясь трудностей, о которых мы только что говорили. В то же время наличие контуров, настроенных на промежуточную частоту (ПЧ), обеспечивает прекрасную избирательность без усложнения процесса настройки, так как частоты всех применяемых станций после преобразования имеют одно и то же значение. Контуры ПЧ настраивают один раз при сборке приемника, чаще всего на частоту 465 кГц.

Н. — Я начинаю представлять себе преимущества подобной конструкции приемника, но хотел бы знать, как осуществляется преобразование частоты. Нельзя ли получить желаемый результат путем наложения на сигнал принимаемой станции колебания, отличающегося от него на величину ПЧ. В этом случае интерференция этих двух частот будет равна их разности, т. е. самой ПЧ.


Евгений Айсберг читать все книги автора по порядку

Евгений Айсберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-for.me.