Knigi-for.me

Евгений Айсберг - Радио и телевидение?.. Это очень просто!

Тут можно читать бесплатно Евгений Айсберг - Радио и телевидение?.. Это очень просто!. Жанр: Радиотехника издательство -, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте knigi-for.me (knigi for me) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Н. — Я понимаю, насколько подобные искажения опасны. А как можно с ними бороться средствами отрицательной обратной связи?

Л. — Очень просто: на вход подают в противофазе переменные напряжения, снятые с выхода. Таким образом, полученные в результате усиления напряжения подают на вход в противофазе, в результате чего искажения взаимно уничтожаются или по крайней мере значительно ослабляются.

Н. — А как практически осуществляется отрицательная обратная связь?



Схемы с отрицательной обратной связью

Л. — Сначала я покажу тебе схемы, в которых используются лампы. Отрицательную обратную связь можно создать посредством включения между катодом и отрицательным полюсом источника высокого напряжения резистора Rо.с, незашунтированного конденсатором (рис. 148, а). По нему протекает весь анодный ток. Его постоянная составляющая создает отрицательное напряжение смещения сетки, а переменная составляющая создает напряжения, противоположные тем, которые прилагаются на входе между сеткой и катодом. Таким образом снижают искажения.

Н. — Но мне кажется, что этим одновременно снижают и коэффициент усиления. Отрицательная обратная связь по своему воздействию противоположна положительной, где на вход подают напряжения, находящиеся в фазе с входными, что повышает усиление.

Л. — Да, Незнайкин, но нельзя одновременно получить хорошее звучание и большое усиление. С помощью отрицательной обратной связи обеспечивают качество звучания, но, естественно, в ущерб коэффициенту усиления.



А теперь я покажу тебе схему с отрицательной обратной связью (рис. 148, б), где для возвращения напряжения на сетку часть его снимают с анодного резистора . Для этого через конденсатор С2 напряжение направляют на делитель Rо.с,Rа. Соотношение сопротивлений между этими двумя резисторами позволяет установить уровень отрицательной обратной связи.



Рис. 148. Отрицательная обратная связь в каскаде на электронной лампе.

а — отрицательная обратная связь по току, создаваемая общим резистором Rо.с в цепях сетки и анода;

б — отрицательная обратная связь по напряжению, полученная благодаря подаче на сетку части переменного напряжения, выделяющегося на нагрузочном резисторе . Последнее снимается с делителя, образованного резисторами Rо.с и .


Н. — У меня складывается впечатление, что предыдущая схема, где отрицательная обратная связь создается резистором в цепи катода, подобна схеме транзисторного усилителя.

Л. — Ты прав. Это то, что, как в ламповых, так и в транзисторных схемах, называют отрицательной обратной связью по току, потому что она создается прохождением выходного тока.

Последняя схема на лампах, которую я тебе показал, содержит отрицательную обратную связь по напряжению. А вот как этот же способ создания отрицательной обратной связи может применяться в транзисторной схеме (рис. 149). Выходное переменное напряжение через конденсатор С передается на делитель напряжения Rо.с, Rа и часть его направляется на вход.



Рис. 149. Отрицательная обратная связь по напряжению в каскаде на транзисторе.


Н. — Ну а я направляюсь к выходу, ибо, если я приду поздно, мне придется испытать на себе отрицательную обратную связь моих родителей.



Комментарий профессора Радиоля

СХЕМЫ СВЯЗИ

Свойства транзисторов, весьма отличные от свойств электронных ламп, определяют необходимость применения особых схем связи между каскадами. Рассматривая различные способы обеспечения связи, профессор Радиоль, в частности, показывает интересные двухтактные схемы, используемые в радиоприемниках.


Очень хорошо, мои дорогие друзья, что вы рассмотрели различные способы создания отрицательной обратной связи. Но это не оставило вам времени изучить различные схемы связи между каскадами на транзисторах. Я признаю, что вы очень внимательно рассмотрели связь с помощью транзистора. Запомни, Незнайкин, что трансформатор можно использовать как в УВЧ, так и в УНЧ, а также и в каскадах усиления ПЧ.


Трансформаторы ВЧ и ПЧ

Вполне естественно, что в усилителях ВЧ и ПЧ для связи используют настроенные контуры, образующие первичную и вторичную обмотки трансформатора или по крайней мере одну из этих обмоток (рис. 150).



Рис. 150. Трансформаторная связь между каскадами ВЧ и ПЧ.


В каскадах ВЧ эти контуры имеют переменную настройку, что позволяет настраивать приемник на соответствующую радиостанцию. В каскадах ПЧ настройка постоянная. Здесь также возникает проблема согласования выходных и входных сопротивлений. Решить эту проблему удается путем использования трансформаторов с коэффициентом трансформации, соответствующим соотношению этих сопротивлений. Для этой цели можно сделать отводы в одной из обмоток, которая ведет себя как автотрансформатор. Часть обмотки, по которой протекает входной ток, играет роль первичной обмотки, а вся обмотка представляет собой вторичную обмотку. На схеме, которую ты видишь, часть витков с отводами а, b служит первичной, а с отводами а, с — вторичной обмоткой трансформатора. А настоящая вторичная обмотка подвергается индуктивному воздействию всей первичной обмотки.


Резистивно-емкостная связь

Будучи твердо убежденным в аналогии между электронными лампами и транзисторами, ты, конечно, не сомневаешься, что транзисторы также могут иметь связь с помощью резисторов и конденсаторов (рис. 151).



Рис. 151. Связь с помощью резисторов и конденсатора между двумя транзисторными усилительными каскадами.


На схеме видно, что R1 служит нагрузочным резистором первого транзистора. Переменное напряжение, создаваемое на этом резисторе коллекторным током, через конденсатор С передастся на базу второго транзистора; смещение на базу подается с делителя напряжения R2, R3.

Ты, возможно, удивился, увидев условное обозначение электролитического конденсатора С. Зачем потребовалось использовать здесь конденсатор связи большой емкости? Причина заключается в характерном для транзисторов низком входном сопротивлении. Поэтому резисторы R2 и R3 должны иметь довольно низкое сопротивление (сотни ом), тогда как в ламповых схемах резисторы утечки сетки обычно имеют сопротивление 0,5–2 МОм.

В связи с тем что сопротивление резистора невелико, конденсатор С не должен иметь слишком большое емкостное сопротивление. В самом деле, создаваемое на R1 выходное напряжение передается на базу второго транзистора через своеобразный делитель напряжения, образованный из соединенных последовательно конденсатора С и резистора R3. Если емкостное сопротивление конденсатора С слишком велико по сравнению с сопротивлением резистора R3, то база получит лишь ничтожную часть выходного напряжения первого транзистора. Если возьмем электролитический конденсатор емкостью 10 мкФ, то для частоты 50 Гц его емкостное сопротивление составит 325 Ом. В этом случае все будет хорошо, так как наибольшая часть напряжения будет добросовестно передана на базу второго транзистора.


Непосредственная связь

У тебя должно быть сложилось впечатление, что использовать полупроводниковые приборы значительно сложнее, чем электронные лампы. Так я успокою тебя и покажу, что в транзисторных схемах связь можно осуществить резистором и обойтись вообще без конденсатора (рис. 152).




Рис. 152. Непосредственная связь с помощью резистора R1, включенного в выходную цепь первого транзистора и во входную цепь второго.


В самом деле, между двумя транзисторами можно установить непосредственную связь. Для этой цели первый транзистор включают по схеме с ОК, а второй — по схеме с ОЭ. На рисунке я провел жирную линию, непосредственно связывающую эмиттер первого транзистора с базой второго. В результате переменное напряжение, создаваемое на нагрузочном резисторе R1 (по нему протекает ток коллектора), прилагается непосредственно к базе второго транзистора. А падение напряжения, создаваемое на резисторе постоянной составляющей первого транзистора, делает базу второго транзистора отрицательной относительно его эмиттера.


Евгений Айсберг читать все книги автора по порядку

Евгений Айсберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-for.me.