Knigi-for.me

Иван Шунейко - Пилотируемые полеты на Луну

Тут можно читать бесплатно Иван Шунейко - Пилотируемые полеты на Луну. Жанр: Техническая литература издательство -, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте knigi-for.me (knigi for me) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Колебания угловой скорости тангажа с частотой 0,5 гц из-за плескания топлива видны на рис. 24.8.

Рис. 24.8. Угловая скорость тангажа на активном участке траектории посадки лунного корабля Apollo-11

Автоматическое управление вело лунный корабль на посадку в кратер размерами с футбольное поле с большим количеством огромных камней. Н. Армстронг переключил ЦАП на ручное управление, изменил курс корабля, перелетел кратер, выбрал ровное место, и посадил корабль с помощью ручного управления.

После взлета с Луны управление с помощью ЦАП тангажом взлетной ступени показано на рис. 24.9. После старта и вертикального подъема в течение 10 сек была подана команда на автоматическое управление тантажом со скоростью 10 град/сек и выход на угол тангажа 52°.

После окончания маневра по тангажу наблюдался типичный низкочастотный предельный цикл изменения ориентации.

Когда было израсходовано все топливо взлетной ступени, ее центр масс переместился из заднего в переднее положение. При взлете центр масс был сзади вектора тяги, после выгорания топлива он переместился в положение впереди вектора тяги. Это явилось причиной изменения компонентов смещения углового ускорения вдоль обеих осей U' и V'. Компонент V' смещения углового ускорения, подсчитанный за последние 150 сек активного участка взлета, показан на рис. 24.10.

ЦАП настраивал свои параметры в пределах закона управления ЖРД РСУ и в соответствии с изменяющимся ускорением смещения.

Рис. 24.9 Команды управления по тангажу и фактическое изменение тангажа при взлете с Луны Apollo-11.

Рис. 24.10. Подсчитанный компонент V' углового ускорения в конце активного участка траектории взлета с Луны Apollo-11.

Рис. 24.11. Число включений ЖРД оси V реактивной системы управления на активном участке траектории взлета Apollo-11

Общее число зажиганий ЖРД РСУ оси V в течение всего активного участка взлета показано на рис. 24. 11.

После взлета во время маневра по тангажу управление ориентацией вокруг оси V поддерживалось около 200 сек зажиганием только +V ЖРД.

Позднее амплитуда предельного цикла увеличилась и для поддержания ориентации стали включаться +V ЖРД и -V ЖРД. Хотя -V момент создает угловое ускорение в том же направлении, в котором действует ускорение смещения от ЖРД взлетной ступени, однако +V момент и -V момент создаются ЖРД РСУ, дающими тягу вверх (+Х) и поэтому не происходит потери AV. Возникновение моментов +V и -V объясняется колебанием взлетной ступени вследствие плескания топлива в баках.

Перед концом активного участка взлета после перемены знака смещения углового ускорения не подавалось команд на зажигание +V ЖРД и управление ориентацией поддерживалось вокруг оси V только включением -V ЖРД. [19.]

2.5. Бесплатформенная аварийная система управления лунного корабля

Наряду с основной системой управления и навигации, в которой используется гиростабилизированная платформа, лунный корабль имеет бесплатформенную аварийную систему управления и навигации.

Основное назначение аварийной системы управления состоят в обеспечении встречи и стыковки лунного корабля с командным отсеком в любой момент их раздельного полета, если отказала основная система управления и навигации.

Аварийная система может осуществлять управление кораблем Apollo на любом участке траектории полета Земля-Луна-Земля и это было доказано в полете Apollo-13.

Описание бесплатформенной аварийной системы управления

Аварийная система управления разработана фирмой TRW (США). Функциональная блок-схема системы представлена на рис. 25.1.

Блок чувствительных элементов аварийной системы состоит из трех маятниковых акселерометров, трех гироскопов и электронного оборудования. Оси чувствительных элементов образуют ортогональный трехгранник и параллельны осям тангажа, рыскания и крена. Чувствительные элементы выдают информацию при помощи импульсных датчиков моментов со следующими характеристиками.

Рис. 25.1. Блок-схема бесплатформенной аварийной системы управления лунным кораблем

Чувствительные элементы монтируются на прецизионной-установочной раме, привязка которой к корпусу корабля осуществляется с помощью прецизионных поверхностей. Никаких приспособлений для изоляции вибраций не применяется.

Бортовая ЭЦВМ аварийной системы управления универсального типа имеет запоминающее устройство на 4096 слов и решает задачи управления и навигации. Опорная система координации задается матрицей направляющих косинусов, характеризующей ориентацию приборных осей и осей инерциальной системы координат. Коррекция направляющих косинусов по измерениям гироскопов производится каждые 20 сек. Измеренные по связанным осям составляющие приращения скорости преобразуются в инерциальную систему координат каждые 40 мсек. Программа полета предусматривает автономную первоначальную выставку и калибровку приборов.

Работа бесплатформенной аварийной системы управления

Двумя участками, на которых работа аварийной системы управления в максимальной степени подвержена влиянию динамики полета лунного корабля, являются участки спуска и подъема (обычно разделенные отрезком времени, в течение которого лунный корабль находится на поверхности Луны). На каждом участке – при посадке на Луну и взлете с Луны – производится изменение скорости на 1830 м/сек в течение 10 мин, сопровождающееся маневрами разворота, предельными циклами и вибрацией.

Перед началом спуска с орбиты ИСЛ осуществляется начальная выставка координат аварийной системы управления по данным основной системы управления и навигации, определяется начальное значение навигационного вектора состояния и производится компенсация смещений гироскопов и акселерометров. Смещение нулей гироскопов определяется путем сравнения с данными ориентации, вырабатываемыми основной системой управления и навигации; нули акселерометров определяются по сигналам, снимаемым с чувствительных элементов аварийной системы на пассивном участке траектории. На поверхности Луны вторично производятся выставка и определение смещения нулей чувствительных элементов.

После отделения лунного корабля от командного отсека аварийная система работает в режиме дублирования основной системы управления и навигации, осуществляющей спуск корабля. В фазе торможения при заходе на посадку с работающим ЖРД, если возникнет аварийная ситуация и переход на аварийную систему управления, система должна вывести лунный корабль на безопасную орбиту и обеспечить встречу и стыковку с командным отсеком.

В условиях нормального снижения и посадки аварийная система используется для подтверждения правильности работы основной системы управления и навигадии.

В случае отказа основной системы управления после перехода на ручное управление посадкой лунного корабля аварийная система должна выдавать информацию об ориентации корабля.

Сразу же после посадки на поверхность Луны аварийная система переводится на режим расчета навигационных задач старта с Луны и встречи с командным отсеком. При нормальных условиях взлета с Луны аварийная система дублирует основную систему управления и навигации. [23.]

Оценка точности аварийной системы управления

Для оценки точности аварийной системы управления сравнивались значения параметров траектории полета корабля, определенных наземной сетью связи и слежения, основной системой управления и навигации и аварийной системой. Полученные результаты при обработке трех траекторий полетов Apollo-10, Apollo-11 и Apollo-12 хорошо согласуются между собой. Погрешность в определении аварийной системой скорости при спуске на Луну не превышает 1,2 м/сек при значении измеряемой величины до 1800 м/сек.

Литература

1. Hardy G. Н. Man's role in launch vechicle guidance and control. AIAA Paper № 69—876. ЭИ АиР, 1970, № 17; РЖ, 1970, 5.41.182

2. Kurkowski R. L., and Hardy G. Н., Gordon Н., Saturn V manual backup guidance and control piloted simulation study. NASA TN D-4481, 1968

3. Lemon R. S., and Stern A. D. Spacecraft backup guidance and control for the Saturn V launch vechicle. The Boeing Co., Doc. No D2—118176—1. Jan. 13, 1969

4. Ваlsam R. E., Anzel В. М. A simplified approach for correction of perturbations on a stationary oirbit. AIAA Paper № 68—456, (ЭИ АиР, 1969, № 7); РЖ, 1968, 12.41.47

5. Gilchrist J. D., Sоland D. E. A manual optimal guidance scheme using a predictive model. J. Spacecraft and Rockets, 1968, 5, № 10, ЭИ АиР, 1969, № 7; РЖ, 1969, 5.41.206

6. Anderson P. A., and Gilchrist J. D., Manual optimal guidance techniques. National Space Meeting of the Institute of Navigation, Feb. 20, 1968, Cocoa Beach, Fla. РЖ, 1969, 6.41.217

7. Edelbaum T. N. Minimum impulse guidance. AIAA Paper № 69—74, ЭИ АиР, 1969, № 33; РЖ, 1969, 10.41.107

8. Evans F. A., Wilcox J. C. Experimental strapdown redundant sensor inertial navigation system. AIAA Paper № 69—851, ЭИ АиР, 1970, № 13; РЖ, 1970, 5.41.224

9. Webber R. F. Performance of the lunar module, powered flight, tracking data processor during the Apollo 12 mission. AIAA Paper № 70—1020, ЭИ АиР, 1971, № 8; РЖ, 1971, 2.41.272


Иван Шунейко читать все книги автора по порядку

Иван Шунейко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-for.me.