Knigi-for.me

Ирина Радунская - Безумные идеи

Тут можно читать бесплатно Ирина Радунская - Безумные идеи. Жанр: Прочая научная литература издательство неизвестно, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте knigi-for.me (knigi for me) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Это было в 1932 году. Появление позитрона стало мировой сенсацией, гвоздем четвертого десятилетия нашего века. Двери в антимир были открыты. Физики ринулись открывать новые «земли». Они с упоением отдались поискам других частиц и античастиц.


Камера Вильсона решила, видно, сыграть роль рога изобилия. И вслед за первой сенсацией породила вторую, потом третью, четвертую... целый каскад новых элементарных частиц и античастиц.


Охотники за космическими частицами еще ниже склонились над своими установками. Они стали еще пристальнее рассматривать фотографии, испещренные толстыми и тонкими, еле видными и отчетливыми линиями – следами промелькнувших космических частиц и осколков разбитых атомов. Физики проявляли чудеса наблюдательности, копаясь в путанице ничего и никому, кроме них, неговорящих следов. И наконец – это было в 1936 году – Андерсон и Неддермайер разглядели еще одну, никем из людей не виденную частицу. Она двигалась проворнее протона, но солиднее электрона. Она была легче первого, но тяжелее второго. Так ее и назвали – «мезон», что значит по-гречески «промежуточный».


Судьба этой частицы очень напоминает судьбу дираковского позитрона. Мезон тоже был введен в науку пером физика-теоретика. Японский ученый Юкава в 1935 году при разработке теории ядра был вынужден ввести особое поле ядерных сил, квантами которых, по его расчету, должны являться особые частицы масса которых составляет около 200 масс электрона, то есть была примерно в 10 раз меньше массы протона.


Давно уже не было секретом, что делим не только сам атом, но и его ядро, что, когда космическая частица прямым ударом разбивала ядро, оно разлеталось на осколки – ядра более легких атомов и одиночные протоны и нейтроны. Протоны ни в ком особого интереса не вызывали. Это были давно известные ядра атомов водорода, из которых природа лепит ядра более тяжелых элементов. Нейтроны, эти нейтральные, незаряженные частицы, тоже уже были знакомы ученым. Но что являлось действительно тайной за семью печатями, так это вопрос о том, как протонам и нейтронам удается сплестись в столь прочный клубок, как атомное ядро. Ведь это не дом, где кирпичи связаны известью; не дерево, пронизанное волокнами; не живой организм из клеток. Что же это такое – атомное ядро? Что связывает его в единое целое? Короче, какова природа ядерных сил, преодолевающих электрические силы отталкивания положительно заряженных протонов?


И Юкава ответил на этот вопрос просто и гениально. Он сказал... Впрочем, представьте себе такую картину. Вдоль дороги идут двое. Не останавливаясь, они все время перебрасывают друг другу мяч. Из-за этого они не могут отойти друг от друга дальше некоторого определенного расстояния. Если издали смотреть на этих людей, то мяча не видно и можно подумать, что эти двое просто дружески беседуют, по-приятельски идут рядом и что их удерживают друг около друга некие силы притяжения.


– Подобные силы притяжения и испытывают протоны и нейтроны в атомном ядре, – сказал Юкава. – Они могут без отдыха биллионы веков «играть в мяч», перебрасываясь мезонами, пока какой-нибудь снаряд, вроде космической частицы, не нарушит это приятное занятие. Тогда, выронив «мяч», протоны и нейтроны брызнут из ядра, и оно погибнет. При этом можно обнаружить и мезоны.


Эту драматическую ситуацию ученым и удалось подстроить и подстеречь в своих приборах. Они стали свидетелями представления, разыгравшегося за кулисами микромира, и смогли увидеть ее актеров без масок. Так они познакомились с мезоном.

Один в трех лицах


Однако вскоре выяснилось, что мезоны Андерсона и Неддермайера, масса которых равна 207 электронным массам, – это не мезоны Юкавы. Это другие частицы. Было установлено, что они не участвуют в образовании ядра и по поведению скорее напоминают электроны. Но в отличие от электронов эти мезоны (теперь их называют мю-мезонами) неустойчивы. Через миллионную долю секунды после своего рождения они распадаются на электрон и два нейтрино, уносящие с собой энергию, соответствующую примерно 200 массам электрона.


А что же мезон Юкавы? Ошибка, заблуждение ученого? Или, как позитрон Дирака, он явился слишком рано, опередив возможности эксперимента? Да, мезон, найденный Юкавой на бумаге, был открыт в действительности лишь через 10 лет английским ученым Поуэлом, который применил новую экспериментальную методику.


Новым окном в природу была толстая фотографическая эмульсия, внутри которой после проявления возникали следы самих космических частиц и тех частиц, которые они выбивали из ядер атомов, входящих в фотоэмульсию.


Частицы, открытые таким образом в 1947 году, имели массу, близкую к вычисленной Юкавой.


Оказалось, что этот мезон, его назвали пи-мезоном, существует в трех разновидностях – два из них, заряженные (положительный и отрицательный), в 273 раза тяжелее электрона, и третий – нейтральный, масса его составляет 264 электронные массы. Они действительно участвуют в образовании связей между ядерными частицами – протонами и нейтронами.


Эти частицы еще неустойчивее, чем мю-мезоны. Заряженные пи-мезоны живут лишь одну стомиллионную долю секунды, распадаясь на мю-мезон и нейтрино. Нейтральный пи-мезон живет еще в 100 миллионов раз меньше. Именно поэтому пи-мезон – ядерный мезон Юкавы – был открыт позже мю-мезона, на некоторое время сбившего ученых на ошибочный путь.


Но, как говорят, лиха беда – начало. За первым мезоном, действительно как из рога изобилия, посыпались другие элементарные частицы. Стала популярной шутка академика Вавилова: «Каждый сезон приносит новый мезон». И это верно отражало положение дел.


Так ученые при помощи космических лучей нашли новый путь изучения строения атомного ядра.

На крыше мира


...Вблизи высочайших вершин Восточного Памира, в семнадцати километрах от озера Ранг-Куль, около которого расположена пещера сокровищ Мата-Таш находится большое здание Памирской станции Физического института Академии наук СССР и разбиты полевые лаборатории экспедиции физиков. Здесь не замирает научная жизнь: проводятся семинары, аккуратно идут дежурства в домиках-лабораториях.


Обслуживание разнообразных приборов требует от участников экспедиции самой широкой подготовки. Они должны быть искушены не только в науке о космических лучах, но и в оптике, радиотехнике, автоматике, фотографии. А руководитель группы широких атмосферных ливней доктор физико-математических наук Зацепин в первые годы существования Памирской базы был домашним врачом экспедиции. Он с успехом вправлял вывихи, вытаскивал из глаз соринки и даже, пользуясь справочником, лечил воспаление легких...


Сейчас на Памире имеются прекрасные помещения с водопроводом и автоматической телефонной станцией, а к услугам штатного врача – первоклассное оборудование. На территории экспедиции разбросаны десятки маленьких домиков-лабораторий.


Одни из них напоминают мастерские, где чинят радиоприемники и телевизоры. На столах, на полу громоздятся всевозможные наполовину разобранные приборы. Это обитель электронщиков.


В других в темноте колдуют фотоспециалисты, проявляя целые фильмы о космических частицах.


В третьих царствуют автоматы, по размерам не уступающие книжным шкафам. Их панели сплошь усеяны нумерованными глазками перемигивающихся красноватых лампочек. Панель с лампочками и остроумным радиотехническим устройством вместе со специальными счетчиками образует годоскоп – систему для ловли «капель», составляющих ливни космических частиц.


Вот загорелась пятая лампочка – значит частица прошла через пятый счетчик. А вот сработал десятый, третий, восьмой...


Так прослеживается путь частиц в ливнях. В некоторых советских годоскопах применяются тысячи счетчиков. За мигающими лампочками, конечно, не уследишь. Да это и не нужно. Смена годоскопических Картин фиксируется на кинопленке, которая затем тщательно, не спеша изучается дома, в московской лаборатории.

Несъедобный студень


В лабораторию Физического института имени Лебедева Академии наук СССР стекаются результаты опытов Памирской и других экспедиций физиков, завозятся стопки фотопластинок и целые бочонки со студнем фотоэмульсии, летавшие на шарах-зондах и самолетах.


Чтобы определить энергию ливня, надо подробно изучить проявленную фотоэмульсию. Справиться с тачкой задачей иногда просто не по силам ученым одной страны. И космики объединяют свои усилия. Они разрезают необычный студень на куски и рассылают в разные страны. Немало времени потратили и советские ученые, разрезая куски студня, прибывшие к ним из Англии, Венгрии, Польши и других стран, на тончайшие листики, подобные фотопластинкам, и прослеживая в них отпечатки микроскопических катастроф.


Ирина Радунская читать все книги автора по порядку

Ирина Радунская - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-for.me.