Knigi-for.me

Коллектив авторов - Современная космология: философские горизонты

Тут можно читать бесплатно Коллектив авторов - Современная космология: философские горизонты. Жанр: Прочая научная литература издательство -, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте knigi-for.me (knigi for me) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Другой пример связан с квантовой космологией. Здесь дела обстоят еще хуже, так как объектом изучения квантовой космологии должно быть квантовое поведение Вселенной в целом. В рамках квантовой космологии Вселенная приобретает статус всеобъемлющего и, тем самым, принципиально единственного в своем роде физического объекта[161], который при этом является существенно квантовым и совершает уникальную квантовую эволюцию[162]. В этом случае возникает множество проблем, одной из которых является то, что квантовые вероятности и квантовое состояние такой всеобъемлющей системы заведомо не имеют простого операционального смысла, так как ничего подобного ансамблю вселенных в одном и том же начальном состоянии с экспериментальной точки зрения иметь невозможно. Между тем, рассматривать Вселенную как квантовый объект необходимо для того, чтобы понять некоторые реально наблюдаемые явления. Среди них важнейшими являются анизотропия реликтового излучения и крупномасштабная неоднородность распределения вещества во Вселенной, которые являются следствием квантовых флуктуаций на очень ранней стадии эволюции Вселенной, когда были существенны крупномасштабные квантовые эффекты. Более того, квантово-космологические представления уже были применены с исключительным успехом для предсказания углового спектра анизотропии реликтового излучения (включая очень тонкие детали явления) и масштаба неоднородности наблюдаемого распределения вещества во Вселенной. Как понять этот результат? С точки зрения традиционной методологии он неприемлем, так как представление о Вселенной как о квантовом объекте в рамках принципов наблюдаемости и повторяемости лишено смысла. Однако успех этого неприемлемого с точки зрения традиционной методологии подхода слишком уж очевиден. Необходима нетрадиционная методология (в том или ином ее варианте).

По поводу квантовой космологии сделаем одно важное замечание. С квантовой космологией очень тесно связаны квантовые теории гравитации. Связь здесь такая. Не любая космологическая модель или теория, в которой существенны квантовые эффекты, является в то же время и моделью квантовой гравитации. Например, квантовые флуктуации, приводящие к анизотропии реликтового излучения, не имеют отношения к квантово-гравитационным эффектам (по крайней мере частично) и могут рассматриваться вне моделей квантовой гравитации. Речь здесь идет о квантовых флуктуациях поля инфлатона — скалярного поля, приводящего к инфляции, которые являются обычными квантово-полевыми флуктуациями, не имеющими прямого отношения к квантовой гравитации или квантованию пространства-времени. Но почти любая квантово-гравитационная теория описывает как единую квантовую систему всё пространство-время, то есть фактически является одновременно и моделью квантовой космологии. В этом качестве для квантовой гравитации характерны все те методологические проблемы, которые были упомянуты выше в отношении квантовой космологии. Ниже, говоря о проблемах квантовой космологии, мы всюду будем подразумевать и аналогичные проблемы в квантовой гравитации.

Как могут быть разрешены эти парадоксы (т. е., почему и как методологически неприемлемые теории приводят к практически полезным результатам), до сих пор не вполне ясно. Одно из возможных объяснений состоит в том, что эти парадоксы являются следствием попытки механически распространить традиционную методологию за те рамки, в пределах которых эта методология ранее была установлена и апробирована. Вероятно, следует честно признать, что методология науки не является чем-то совершенно незыблемым, но определенная методология может иметь границы применимости подобно тому, как имеет границы применимости и каждый отдельный физический закон. Важно отдавать себе отчет о возможности существования таких границ и необходимости ревизии важнейших методологических принципов при вынужденном выходе за эти границы, что как раз и означает переход к нетрадиционной методологии. Где же находятся эти границы и что могут представлять собой новые методологические принципы?

Мне представляется, что космология (и особенно — квантовая космология), квантовая гравитация и некоторые другие разделы физики вроде квантовой теории сознания заведомо лежат за этими границами, о чем говорят упомянутые выше парадоксы. Просто каким-либо уточнением существующих методологических принципов здесь, видимо, не обойтись — изменения методологии должны быть явными и довольно радикальными. Впрочем, исследователи в этих областях науки фактически уже давно выходят за рамки стандартной научной методологии (как это понятие было определено выше), но делают это неявно и, видимо, часто не вполне осознанно.

По моему мнению, имеется необходимость перейти от принципов наблюдаемости и воспроизводимости эксперимента (за пределами их применимости) к некоторым более общим положениям. Мы их попытаемся сформулировать следующим образом. Во-первых, теории должны всего лишь давать предсказания, хотя бы косвенно проверяемые в экспериментальных наблюдениях, но необязательно все существенные выходные данные теории должны быть строго операционально определимы. Это положение ниже будем называть принципом предиктивности, который заменяет принцип наблюдаемости. Во-вторых, сами экспериментальные наблюдения должны обладать свойством объективности, но не обязательно воспроизводимости. Это положение будем называть принципом объективности наблюдений, оно заменяет принцип воспроизводимости эксперимента. Введенные методологические положения требуют пояснений (в частности, было использовано не определенное понятие косвенного измерения). Хотелось бы, конечно, дать точные, строгие и исчерпывающие определения для введенных понятий, но эта задача представляется слишком сложной, и мы не будем пытаться ее здесь решить. Вместо этого поясним смысл введенных понятий просто на уровне здравого смысла, с использованием нескольких примеров.

Под «объективными экспериментальными наблюдениями» (принцип объективности) здесь понимаются наблюдения, обладающие следующими двумя свойствами. Во-первых, такие наблюдения подразумевают, что их результаты прямо доступны неограниченному числу экспертов-наблюдателей. Тем самым исключены, например, самонаблюдения над индивидуальным состоянием сознания экспериментатора и другие подобные наблюдения субъективного характера. Это нетривиально, так как некоторые подходы к интерпретации квантовой теории, и, в частности, в отношении квантовой структуры Вселенной, могут включать подобные самонаблюдения. Допущение подобных субъективных методов означало бы дальнейшее расширение методологической базы, что в данном случае не требуется. Во-вторых, требуется, чтобы наблюдения осуществлялись с помощью оборудования, которое приводит к воспроизводимым результатам в обычном смысле в тестовых экспериментах и калибровочных измерениях. От самих результатов измерений воспроизводимости, вообще говоря, не требуется, так как они могут иметь в каком-то смысле уникальный характер или не быть воспроизводимыми контролируемым образом. Примерами объективных, но невоспроизводимых наблюдений являются наблюдения некоторых уникальных астрофизических событий, например, нейтринной вспышки от взрыва сверхновой 1987А в Магеллановом облаке[163]. Невоспроизводимость некоторых объективных наблюдений нередко создает проблемы. Так, например, в то время, как особых сомнений в достоверности регистрации нейтринного сигнала сверхновой 1987А нет (так как он был зарегистрирован несколькими нейтринными телескопами с разной степенью надежности), то же самое нельзя сказать о регистрации гравитационного импульса, сопровождающего взрыв сверхновой 1987А, единичной установкой в Римском эксперименте по обнаружению гравитационных волн2.

Отметим, что принцип объективности наблюдения представляет собой ослабленный вариант принципа воспроизводимости, так как из воспроизводимости эксперимента всегда следует объективность соответствующего наблюдения, но обратное, вообще говоря, неверно. Можно отметить, что в качестве критерия научности экспериментальных результатов принцип объективности наблюдения очень часто и уже довольно давно используется неявно вместо критерия воспроизводимости эксперимента.

Рассмотрим теперь более подробно принцип предиктивности теорий. Принцип предиктивности требует, чтобы теории давали принципиально проверяемые следствия (вовсе не обязательно, чтобы эти следствия были проверяемы на уже достигнутом технологическом уровне!), некоторым образом (хотя бы косвенно) связанные с экспериментом, но не требует, чтобы каждый существенный ингредиент теоретической модели обязательно имел строгий операциональный смысл. Мы затрудняемся в общем виде определить, что следует понимать под непрямой (косвенной) связью теории и эксперимента, которое, по сути, является ядром понятия предиктивной теории. Вместо этого разберем смысл понятия предиктивности на важном и весьма нетривиальном реальном примере предсказания анизотропии реликтового излучения в инфляционной космологии, а вопрос о точном определении оставим для будущих исследований.


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки kniga-for.me.